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The sliced-cylinder ’ laboratory model of the 
wind-driven ocean circulation. 

Part 2. Oscillatory forcing and Rossby wave resonance 

By ROBERT C. BEARDSLEY 
Department of Meteorology, Massachusetts Institute of Technology, Cambridge 

(Received 7 March 1974) 

The response of the ‘ sliced-cylinder ’ laboratory model for the wind-driven ocean 
circulation is studied here in part 2 for the case of an oscillatory ‘wind’ stress. 
The model consists of a rapidly rotating right cylinder with a planar sloping 
bottom. This basin geometry contains no closed geostrophic contours, so that low 
frequency topographic Rossby wave modes possessing mean vorticity exist in 
the sliced-cylinder model by the physical analogy between topographic vortex 
stretching and the /3 effect for large-scale planetary flows. The interior flow in the 
laboratory model is driven by the time-dependent Ekman-layer suction produced 
by the periodic relative angular velocity of the upper lid. The frequency of the 
forcing is sufficiently small that the interior motion is quasi-geostrophic with the 
horizontal veIocities being independent of depth. Simple two-dimensional 
analytic and numerical models are developed and compared very favourably 
with the laboratory results. The observed horizontal velocity field exhibits both 
(i) westward intensification and decreased horizontal scale when the forcing 
frequency is decreased, and (ii) a significant resonant magnification when the 
forcing frequency is tuned to the natural frequency of one of the lower inviscid 
topographic Rossby wave modes. The observed westward phase speed of the 
driven motion is accurately predicted and shows little dependence on the ampli- 
tude of the forcing. The instantaneous and mean Lagrangian fluid particle 
trajectories were measured in the laboratory model. The general derivation by 
Moore (1970) of the governing equations for the mean Lagrangian motion are 
extended to incorporate forcing and Ekman-layer dissipation. The results suggest 
that the mean Lagrangian flow should be significantly reduced near resonant 
frequencies, since the mean Eulerian motion is partially offset by the Stokes drift 
associated with the topographic Rossby wave modes. This result is consistent 
with the small observed amplitude of the mean Lagrangian motion. Also pre- 
sented are the results for a laboratory experiment conducted using a combined 
steady and oscillatory ‘wind’ stress. 

1. Introduction 
We focus our attention in part 2 on the ‘sliced-cylinder’ laboratory model for 

the wind-driven ocean circulation and the time-dependent flows driven in it by 
oscillatory ‘wind’ stresses. The model consists of a rapidly rotating cylinder with 
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FIGURE 1. The ‘sliced-cylinder ’ configuration. 

a planar sloping bottom (see figure 1 and Beardsley & Robbins 1975 (part 1)) .  
It was introduced by Pedlosky & Greenspan (1967), to demonstrate how the 
general theory for contained homogeneous rotating flows developed by Greenspan 
(as summarized in Greenspan 1968) must be modified for a fluid basin with no 
closed curves of constant depth (i.e. a basin with no closed geostrophic contours). 
Steady geostrophic motion can no longer exist, and is replaced by a set of new 
low-frequency inertial modes with frequency proportional t o  the bottom slope s. 
These modes or standing waves possess mean vorticity. They collapse into the 
steady geostrophic mode in the limit of zero bottom slope s = 0. Owing to the 
physical analogy between topographic vortex stretching in the ‘ sliced-cylinder ’ 
model and the p effect for large-scale geophysical flows, these inertial waves are 
dynamically similar to atmospheric planetary waves first studied by Rossby 
(1939). In  the context of the sliced-cylinder and similar models, they will be 
called topographic Rossby waves. Pedlosky & Greenspan (1967) used these quasi- 
geostrophic modes to solve the initial-value problem for spin-up in the sliced- 
cylinder geometry. (See Greenspan (1968, p. 91) for a visual comparison of theory 
and experiment for spin-up.) Since the ‘ sliced-cylinder ’ geometry possesses these 
low-frequency modes, our approach has been to use this particular laboratory 
model to examine the forced response of weakly-damped topographic Rossby 
waves. 

Other laboratory geometries besides the sliced-cylinder model can be used to 
simulate Rossby waves. Both Ibbetson & Phillips (1967) and Holton (1971) have 
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used an annular basin with a prescribed radial depth variation to study forced 
barotropic Rossby waves. The first study is based on an analysis by Phillips 
(1965) of the free topographic travelling waves in a rotating annulus with a free 
surface such that the depth is proportional to radius squared. This particular 
choice of geometry leads to simple analytic solutions, which are then compared 
with experiments by Ibbetson & Phillips (1967). In the ‘open’ channel experi- 
ment, a flat paddle placed vertically in the annulus was used to excite waves 
propagating in both directions along the channel. The experiments nicely verified 
that long waves (with positive group velocity) were generated on the up-rotation 
side of the paddle, while shorter waves (with negative group velocity) appeared 
on the down-rotation side. Both sets of wave trains possessed westward phase 
velocities (in the down-rotation direction). The viscous damping was sufficiently 
large that the two wave trains were dissipated before meeting on the opposite 
side of the annulus; hence the phase ‘open’ channel. The observed rate of 
damping was larger (by 20 to 100 %) than predicted by an analysis of the Ekman 
and side-wall boundary layers. This large damping also prohibited any pro- 
nounced resonance in the ‘closed’ channel experiment conducted with a radial 
barrier located 60” up-rotation of the paddle. These experiments did illustrate 
the frequency-dependent east-west asymmetry in the forced Rossby wave 
response, as predicted in a separate study of forced p-ylane modes by Pedlosky 
(1965). A significant mean azimuthal circulation was also observed (see Ibbetson 
& Phillips 1967, figure 5 ( b ) ) ,  in part because of a large Stokes drift associated with 
the large paddle amplitudes used in the experiment. 

More recently, Holton (1 971) considered topographic waves in a rotating 
annulus with a linear sloping bottom. The waves were forced by a simple mass 
source-sink distribution which was rotated in a westward sense relative to the 
annulus. The experiments illustrated in a qualitative way that different free 
modes are resonantly excited as their westward phase speeds are matched by the 
relative rotation of the source-sink distribution. The actual concentrated nature 
of the source-sink distribution (and the strong nonlinear flows near it) prohibited 
any detailed comparison of the experimental results with Holton’s linear analysis. 

These previous laboratory studies have served to demonstrate some of the 
major features of forced quasi-geostrophic motion in connexion with the baro- 
tropic wind-driven ocean circulation problem. Quasi-geostrophic motion in the 
ocean has, of course, been the subject of much study in the past fifteen years. The 
particular question of the influence of low-frequency fluctuating motions on the 
mean general circulation has become a central question on which, hopefully, 
MODE (Mid-Ocean Dynamics Experiment) and similar experiments will provide 
some insight. Much of this interest has been stimulated by the early observations 
of Swallow (1961) and Crease (1962), indicating that there is significantly more 
meridional eddy motion in the western part of the Atlantic Ocean than in the 
eastern. Phillips (1966) later fitted some of the Swallow float observations taken 
near Bermuda to a two-layer model. This necessarily crude analysis indicated 
that almost 80% of the kinetic energy is in the barotropic mode. More recent 
observations indicate that most of the kinetic energy contained in the low- 
frequency band is in the barotropic and first baroclinic modes. The theoretical 
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study of ocean circulations in closed basins driven by oscillatory wind stresses 
began with Pedlosky (1965), who determined the linear response in a barotropic 
/?-plane model to an easterly moving stress pattern. Phillips (1966) extended this 
linear analysis to a two-layer model and examined in detail the very low- 
frequency response, in an attempt to explain the Swallow float observations as 
overdamped Rossby modes. Another aspect of the theoretical problem has been 
examined by Robinson (1965), Pedlosky (1965), and Munk & Moore (1968), who 
computed in a variety of inviscid models steady mean circulations driven by 
Reynolds stresses produced by low-frequency fluctuations. Veronis, in a sequence 
of more sophisticated numerical models (summarized in 19701, has also studied 
the generation of mean currents driven by large amplitude oscillatory wind 
stresses. The mean circulations examined in these previous studies have all been 
time average currents in the Eulerian sense (i.e. time average currents observed 
at  a fixed position in space). Moore (1970) examined both the mean circulation 
driven by the Reynolds stresses plus the Stokes drift associated with the inviscid 
wave motion, to deduce that the mean Lagrangian velocity must satisfy both the 
linearized potential vorticity and continuity equations for unforced steady flow. 
This result applied to containers with open geostrophic contours means that the 
Stokes drift for each of the free modes will exactly cancel the associated mean 
Eulerian circulation, to produce a zero mean Lagrangian motion. Unfortunately, 
Moore’s analysis cannot easily be extended to the case of forced motion in a dis- 
sipative system. But., in the case discussed by Pedlosky (1965), where the forced 
motion at  resonance has the structure of an inviscid free mode, Moore argues that 
the Lagrangian mean velocity should vanish to second order. This result is not 
true when the rate of damping is large enough to modify the modal structure near 
resonance. 

We shall now consider the low-frequency transient motion generated in the 
sliced-cylinder model by an oscillatory forcing. In the laboratory model (see 
figure 1),  the relative angular velocity of the driving lid is represented by 

Qrel/Q = €s + E0 cos wt. 

Q is the angular velocity of the basin; tzs and eo are the non-dimensional Rossby 
numbers associated with the steady and periodic components of the external 
forcing. Our principal interest is in a purely sinusoidal forcing with e8 = 0, 
although the results of exploratory experiments with both steady and oscillatory 
forcing will be presented. In  § 2 a simple analytic model will be developed from 
the model equations presented in part 1. The analytic solutions will then be com- 
pared with results from both laboratory and numerical experiments. Then some 
observations of the mean Lagrangian velocity will be discussed. 

2. The analytic model 
We wish to develop a simple analytic model for the time-dependent motion, 

forced mechanically in the sliced-cylinder geometry by a relative angular oscil- 
latory motion of the upper lid. A consistent two-dimensional vorticity equation 
for low-frequency motion in the sliced-cylinder model was derived in part 1. We 
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shall use here a modified version of (ti), in which (i) velocity and time are scaled 
by eo Q L  and Q-1, respectively, and (ii) the effects of lateral friction are ignored. 
This scaling is chosen to be consistent with Pedlosky & Greenspan's analysis of 
the free topographic Rossby modes in the sliced-cylinder model. Justification for 
both the continued use of steady Ekman-layer theory to couple the motion in the 
interior of the fluid to the mechanical forcing and the neglect of lateral vorticity 
diffusion will be presented later. The resulting linearized governing vorticity 
equation in this new scaling is then 

(apt + y )  v2*, + sl~.~, = y cos ct, (2) 
The non-dimensional decay rate due to Ekman-layer suction is y = 2E) 
( E  = v/QL2); the non-dimensional coefficient for the topographicPeffect is S = 2s 
(where s = t ana  is the bottom slope); and c is simply the ratio of the forcing 
frequency w divided by Q. The only boundary condition on $,, is that the 
cylindrical boundary at r = a be a streamline, thus $o = 0 there. Equation (2) is 
similar to the linearized /3-plane vorticity equations studied by Pedlosky (1965) 
and Phillips (1966), the sole difference occurring in the spatial structure of the 
forcing. 

In  the inviscid limit with y -f 0, (2) reduces to the linearized conservation 
equation for potential vorticity with free topographic Rossby modes as solutions. 
The form of these normal modes is given by 

$om, = Jm(kmnr/a)  exp i(m@ + k m n x / a  + cmnt), (3) 

= Sa/le,n, (4 )  

and the dispersion relationship is 

where Jm(kmn) = 0. These modes consist of westward propagating vorticity cells 
with a stationary amplitude envelope given by the individual Bessel functions. 
As the spatial scale decreases with increasing n and m, the effective topographic 
restoring force decreases, causing the natural frequency of the modes to decrease. 
By analogy to simple mechanical systems (see Slater & Prank 1947), we can use 
the natural period of the free modes together with the Ekman-layer spin-down 
rate to define a quality factor for the damped modes 

Q is 277 times the reciprocal fractional loss of energy over one wave period. When 
Q 9 I, a sharp resonance occurs in the slightly dissipative system when driven at  
the natural frequency. For the range of parameters explored here, the maximum 
Q = 10 for the lowest topographic Rossby mode (m = 0, n = 1). Q tends to zero 
for the higher modes, owing to the increase in period with decreasing spatial scale. 

The analytic solution to the forced viscous vorticity equation (2) may be 
obtained in terms of elementary functions as 

m \ l  

m=1 
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FIGURE 2. Roots of boundary-layer equation (6) plotted for azimuthal positions 8 = 0 
(------), &n (-), n (-), as a function of relative forcing frequency w / n .  

where the Fourier coefficients and the complex wavenumber are defined by 

k = *8i(y+ia), h = ku. 

The full solution consists of a particular forced north-south motion plus the 
superposition of damped modes (similar but not identical in structure to the free 
modes) required here by the boundary condition on the forced flow. The east- 
west wavenumber k is complex. We used the MIT Information Processing Center 
subroutine Combes to compute numerical values of the J Bessel function for 
complex arguments. 

The above solution is based on two assumptions: the applicability of the 
steady-state Ekman-suction formula, and the neglect of lateral friction. Since our 
interest lies in the low-frequency motion for which r = w/Q I, the time- 
dependent Ekman-layer problem may be solved using a perturbation approach 
(with CT being the small parameter), to yield a first-order Ekman-layer suction 
formula for low-frequency motion. The slow but non-steady time dependence 
of the motion causes a small amplitude and phase difference in the Ekman-layer 
suction. For the range of parameters and frequencies considered here, the ampli- 
tude difference is insignificant, while the computed phase lag between the interior 
vorticity field and the Ekman-layer suction never exceeds 3". Thus the simplicity 
of using the stea>dy-state Ekman-layer suction formula in developing (2) is 
really justified as a sufficiently accurate approximation for our model problem. 
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The fluid must also satisfy the no-slip boundary condition on the lateral 
boundary. For the case of a steady driving stress, western intensification occurs 
and a topographically modified Ea Stewartson layer arises to bring the western 
boundary current to zero at the lateral boundary. Stokes-like boundary layers 
can now occur in the time-dependent case, where the boundary-layer thickness 
is a, strong function of the forcing frequency. Let 5 = Re 3 vi exp (lip + i d )  be 

the boundary-layer correction field for the azimuthal velocity, which is to be 
added to ( 5 )  so that the combined velocity field satisfies the no-slip condition at  
r = a. The boundary-layer co-ordinate is p = a-r .  Substitution of fi into ( 2 )  
yields the following eigenvalue equation for I ,  the inverse boundary-layer thick- 
ness scale: 

i 

-(ia+y)l+Scos8+EZ3 = 0. (6) 

E = v/QL2 is the original Ekman number. The three roots of (6) are plotted in 
figure 2 for three different azimuthal positions 0 = 0, +n, n. Near 0 = in, the 
topographic influence is negligible, and the boundary-layer structure is similar to 
the classic Stokes layer (see Lamb 1945, $345)) with an approximate non- 
dimensional thickness (E/a)B. Along the eastern and western boundaries, topo- 
graphic vortex stretching is important only at  very low frequencies. For example, 
at 8 = n, the two allowable roots with negative real parts are 1, and 1, (see figure 2 ) .  
In  the steady limit, with g = 0, I, and 1, are complex conjugates representing the 
topographically modified Et Stewartson layer. As the frequency increases, 1, 
decreases rapidly towards zero, while I ,  increases rapidly and approaches the 
- $n asymptote characterizing the classic Stokes boundary layer. The amplitude 
of the correction field 5, associated with 1, also decreases rapidly toward zero, 
while - 5, rapidly approaches the interior tangential velocity value with 
increasing frequency. Only one root of (6) has a negative real part along the 
eastern boundary. The structure there again approaches the classic Stokes 
behaviour for increasing frequency. For the range of frequencies studied here, 
these time-dependent lateral boundary layers are still relatively thin (e.g. 
A p  = - l/Re (12 )  = & a t  (T = 0.04, or approximately 0.25cm). In  the (relatively) 
high-frequency limit, both the ratios of the boundary-layer scale thickness and 
inverse velocity amplitudes are proportional to I, 1;l N E h ~ f  2: 0.12 for g = 0.07. 
Scale analysis suggests that lateral friction is completely negligible in the 
interior, owing to the large spatial scales associated with the lower topographic 
Rossby modes. 

3. The experiments 
We next discuss the laboratory and numerical sliced-cylinder experiments for 

transient forcing and compare the experimental results with the preceding 
analytic solution. The basic sliced-cylinder laboratory apparatus has been 
described in detail in Beardsley (1969). The fluid motion is driven by the oscil- 
latory relative rotation of the upper lid, which is generated through a gear train, 
by a simple synchronous motor and scotch-yoke mechanism. In  most of the 
experiments to be presented, we chose for the sake of simplicity to hold constant 
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FIGURE 3. External parameter variation as a function of relative forcing frequency E o/n. 

Rossby number e0 = 0.0304 at o/n = 0.07. 

both the absolute frequency of the forcing and the relative angular velocity of 
the driving lid. Thus the rotation of the synchronous motor is kept at 3 r.p.m., so 
that the absolute forcing frequency is w = 0.314rad s-l. In  many of the experi- 
ments, the amplitude of the relative angular velocity is fixed at  co Q = 0.137rad s-l, 
corresponding to a total angular displacement of the lid of 2.74rad (or 156’) in 
half a period. With this mechanical arrangement, both the relative forcing 
frequency = w/Q, and the external oscillatory Rossby number eo are varied 
inversely by adjusting the overall angular velocity of the basin, Q. The depend- 
ence of the various external experimental parameters on the relative forcing 
frequency are illustrated in figure 3. A differential gear plus an independent 
synchronous motor in the gear train can also allow the addition of a steady 
component to  the sinusoidal driving. This feature is used to study the influence of 
transient waves on the intense western boundary current. 

The typical interior velocities were large enough that the horizontal flow 
structure was visualized with streak photography, using a weak aluminium flake 
suspension ‘illuminated from the side by a narrow horizontal slit beam, centred 
at a depth of z = 0.43. An automatic 35 mm camera was used to take a time-lapse 
photograph (with an exposure of 2.1s) every 21s. With the basic oscillatory 
period (277/w) fixed a t  20 s, the automatic camera produced a sequence of 20 streak 
photographs, to illustrate the horizontal flow field over one wave period. 

An attempt was made to measure horizontal velocities using heated miniature 
thermistors as constant-temperature hot-wire anemometers. Three thermistors 
(VECO 31845, nominal resistance 1 K, diameter 0.033 cm) were suspended along 
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the east-west axis of the cylinder a t  x/L = - l/J2,0, 1/42 near the midplane of 
the basin at z/L = 0.43. The thermistors had approximate time and dissipation 
constantsin water of 100ms and 2 mW OC-1,  respectively, so that maintenance of 
a 2 "C temperature rise above ambient temperature required only about 4 mW 
dissipation in the fluid. While the speed-voltage calibration for the individual 
thermistors varied too much with time for the velocity to be accurately measured, 
the greater sensitivity to low flow speeds made the thermistor anemometers a 
good null-velocity sensor. Since the basic time-dependent circulation pattern 
consists of vortical cells with north-south symmetry, the thermistors can be used 
to measure accurately the time of passage of velocity nodes which occur on the 
east-west axis. Since the absolute forcing frequency is constant for the different 
experiments, the time and phase lags associated with the finite response time of 
the thermistors should remain approximately constant and thus independent of 
the relative forcing frequency u. 

The numerical solutions to be discussed were obtained using the efficient 
implicit scheme presented in Beardsley (1973), and outlined in part 1. The 
governing vorticity equation was modified to incorporate the oscillatory forcing 
(again using the steady-state Ekman-layer suction formula), then integrated for 
several spin-up periods, until the starting transients had vanished. The radial 
grid net used was essentially uniform spacing in the interior with increased 
resolution near the outer boundary. The appropriate radial scale for the side-wall 
boundary layer is the Stokes thickness d = L(E/a)*. Beardsley (1973) gave the 
actual radial transformation used in these time-dependent calculations with 
a = 0.5 and d = (E/u)8 (see that paper for the notation). This choice places 
approximately half the total grid points uniformly separated in the interior with 
the remaining grid points concentrated near the circular boundary. With a radial- 
azimuthal grid net of 3 1 x 128 points and 32 time steps used per oscillation period, 
the estimated spatial and temporal truncation errors were less than 0.5 yo for the 
lower topographic modes. The efficiency of the implicit scheme was improved by 
sinusoidal extrapolation, to predict the new stream function and wall vorticity 
fields. 

A list of numerical experiments conducted, together with the equivalent 
external laboratory parameters, is given in table 1. The bottom slope in all experi- 
ments was held constant at s = 0.178 (a  = loo), and aspect ratio a = 1.0. For 
fixed Cl and L, the laboratory Ekman number changed less than k 2 % owing to 
fluid temperature variations from experiment to experiment. A nominal value 
of 1 CS for v was used in the numerical experiments, causing the Ekman suction 
parameter y in the numerical experiments to be approximately 4 yo larger than 
in the associated laboratory experiments. This systematic difference overshadows 
the uncertainties in the computed values of the other experimental parameters. 

3.1. The stream function and velocity 

Pedlosky (1965) and Phillips (1965) have already shown that the driven Rossby 
wave modes in a rectangular basin exhibit an east-west asymmetry, owing to 
the inclusion of Ekman-layer suction or bottom friction in their models. This 
feature becomes more pronounced as the relative frequency of the symmetric 
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Exp . 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

r = w / n  

0.07 
0.07 
0.0625 
0.07 
0.07 
0.055 
0.0475 
0.04 
0.0775 
0.0850 
0.073 
0.067 
0.07 
0.0325 

60 

0,0304 
0.0912 
0.0272 
0.2737 
0-1521 
0.0239 
0.0206 
0.0174 
0.0337 
0.0369 
0.0317 
0.0291 
0.0 
0.0141 

E x  105 

1.38 
1.38 
1.23 
1.38 
1.38 
1.08 
0.94 
0.79 
1-53 
1.68 
1.44 
1.32 
1.38 
0.64 

no x 103 

1-78 
5.35 
1.51 

16.05 
8.92 
1-24 
0.995 
0,772 
2.08 
2.38 
1.90 
1.67 
0.0 
0.563 

s x  102 

2.09 
2.09 
1.97 
2.09 
2.09 
1-85 
1.72 
1.58 
2.20 
2.30 
2.13 
2.04 
2.09 
1.42 

e x  105 

3.88 
3.88 
3.46 
3.88 
3.88 
3.05 
2.63 
2.22 
4.30 
4.71 
4.05 
3.71 
3.88 
1.80 

TABLE 1. Parameter values for numerical experiments conducted with 
sinusoidal forcing 

forcing decreases. The analytic solution given here in (5) for the forced topo- 
graphic Rossby modes in a circular basin also exhibits this east-west asymmetry. 
Since the model wavenumber k is complex, the real part of the exponent of 
exp (ikx) is simply - (syx) / (y2 + c2), indicating an exponential increase in the 
stream-function envelope towards the west, owing to the non-zero bottom friction 
coefficient y, As cr, the relative forcing frequency, decreases, the east-west asym- 
metry clearly increases. In  the limit of zero forcing frequency, the flow reduces 
to a steady western boundary layer of non-dimensional thickness (s ly)  and a slow 
interior Sverdrup-type flow, with a balance between Ekman suction and flow 
across the topographic contours. When the forcing frequency is non-zero but very 
small, the western boundary layer consists of short reflected topographic Rossby 
waves that are quickly damped by Ekman-layer suction before they can propa- 
gate very far to the east. As the frequency of the forced waves increases, their 
characteristic horizontal scale and group velocities increase, while the fractional 
Ekman-layer dissipation per wave period decreases. Both trends cause the east- 
west asymmetry to decrease; and, in the limit of very small dissipation (i.e. 
Q 9 S )  the forcing frequency may be tuned to excite a quasi-inviscid mode 
resonantly, which has (as indicated by (3)) a symmetric amplitude envelope in 
the east-west direction. 

This trend towards western concentration with decreasing frequency is illu- 
strated in the bwo sequences of streak photographs shown in figures 4 and 5 
(plate 1).  In figure 4 the lowest normal mode is excited with the forcing 
frequency 5.4 yo below the natural frequency of the (m = 0,  n = 1)  inviscid mode. 
The forcing frequency is below the eigenfrequency of the (m = I, n = 1 )  mode in 
figure 5; both the east-west spacing of the vorticity cells and the velocity ampli- 
tudes in the eastern half of the basin are reduced. In figure 6 are shown the corre- 
sponding stream-function patterns obtained using the numerical model. Both the 
analytic and numerical linear solutions are symmetric about the x axis, so the 
small tilting of the north-south streamlines near the x axis and the alternating 
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0 5a 
FIGURE 6. Stream-function patterns at phase lags of 0 and tn, for frequencies w/Q: 
( a )  0.073, ( b )  0.055, (c) 0.0325. Contour interval is 20in (a) ,  (c), and 10 in (b ) .  Extreme 
values are, from left to right, as follows. ( a )  H = 40, L = -364; L = -222, H = 217. 
( b )  H = 19, L = -223, H = 21; L = - 143, H 
L = -143, H = 203, L = 5, H = 50. 

114. (c) L = - 350, H = -63, L = - 120; 

4-2 
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FIGURE 7. Maximum north-south velocities observed a t  (a) P,, and ( b )  Pc, scaled by eofiSzL. 
0, laboratory results; x , numerical model results; - , analytic predictions. 

displacement of the highs and lows of the stream function are due to the weak 
nonlinearity of the flow. The second effect is more noticeable as the forcing 
frequency is reduced, even though in these experiments, the effective Rossby 
numbers (R, and e,,/E3) are proportional to  d, so that the external nonlinear 
parameter decreases with decreasing frequency. The rapid decrease in spatial 
scale with decreasing frequency tends to  compensate, so the nonlinear inter- 
action of the vortical cells gets more intense at  lower frequencies. 

Our earliel estimation of a quality factor Q larger than unity for the lower 
(m, n)  topographical Rossby modes in the sliced-cylinder experiment suggests 
that a distinct resonance may be observed when the forcing frequency is tuned to 
the inviscid eigenfrequencies. To demonstrate this resonance effect, we chose to 
measure the maximum amplitude of the north-south velocity v at two positions 
on the x axis: the point P, located in the centre of the basin at  x = 0, and the 
point P, located in the western half of the basin at  x = - L/,/2. The observed 
non-dimensional velocities are shown as open circles in figure 7, together with 
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go1 Cll u21 a 0 2  u31 u12 

0.074 0.046 0.035 0.032 0.028 0.025 

TABLE 2. Inviscid eigenfrequencies of the lower topographic Rossby wave modes in the 
sliced-cylinder configuration. Principal uncertainty of 2 "/o in urn* caused by error in 
measurement of bottom slope s = tana 

the analytic values (solid line) and computed values (crosses) obtained from the 
numerical experiments. The analytic solution clearly illustrates the peaked 
response near the lower eigenfrequencies col = 0.074 and cl1 = 0.046. For the 
given dissipation, further decrease in the forcing frequency causes the individual 
modes to lose their identity, and the band structure discussed by Phillips (1966) 
to occur. Note that at  the maximum eigenfrequency uol = 0.074, the velocities 
at P, and P, are approximately equal, the dissipation at  this frequency being 
sufficiently weak to cause little east-west asymmetry. The western concentration 
of the flow clearly occurs toward lower frequencies. The principal uncertainty in 
the laboratory velocity measurements arises from the difficulty of accurately 
determining the particle path length on the streak photographs. The streak 
photograph is a time-lapse picture (i.e. the particle length represents the velocity 
integrated over a time interval At equal to 10.5 yo of the period of the forcing). 
The values of the observed velocities presented in figure 7 have been multiplied 
by (wAt)/sin (wAt), to correct for this averaging effect. In  general, over the limited 
frequency range explored, the results of the laboratory and numerical model 
agree to within the estimated uncertainty while the analytic model exhibits 
slightly larger velocities. The linear numerical solution obtained a t  u = 0.07 
indicates that, at  least at this frequency, the small but non-zero inertia of the 
fluid reduces the maximum velocities calculated at P, and P, by only 0.47 %. 
A comparison of the maximum stream function observed at P, and P, is also 
shown in figure 8. The solid curves represent the analytic model, while the crosses 
are predicted by the numerical solutions. Again both models exhibit western 
intensification and resonance at  the maximum eigenfrequencies. 

3.2. Phase and phase speed measurements 
Several exploratory laboratory experiments were conducted early in this study 
with an additional set of miniature thermistors mounted along the x axis just 
outside the lower Ekman layer. Using this set, together with the set of thermistors 
supported at  z / L  = 0.43, as velocity null sensors, we measured the phase lag of 
the westward moving cells at the two levels. We found that, to within an esti- 
mated uncertainty of & 4", the horizontal velocity structure was independent of 
depth. We then measured the relative phase of the velocity nodes a t  the two 
points P, and P, (at xIL = 0.43) over the frequency range 0.02 < < 0.1. The 
results are shown as vertical crosses in figure 9, together with phase lag values 
(circles) estimated from the streak photographs. The solid curve and diagonal 
crosses represent the analytic and numerical model predictions respectively. 
Though there is considerable experimental uncertainty in the laboratory 
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FIGURE 8. Comparison of maximum stream functions occurring at  P ,  and P, as predicted 

by analytic model (-) and full numerical model ( x ). 

measurements using either technique, a significant phase lag exists between the 
observed laboratory response and the analytic and numerical model predictions. 
Some lag of the same sign exhibited in figure 9 is expected, since we have assumed 
steady-state Ekman-layer dynamics in both theoretical models. The expected 
lag based on a perturbation analysis of the time-dependent Ekman layer is < 6", 
considerably less than the observed lag. The estimated error brackets on the 
laboratory measurements shown in figure 9 ignore any systematic lag due to the 
finite time constant of the thermistors. The streak photographs are also assumed 
to illustrate the velocity pattern at  the exact mid-time of the exposure. While the 
nominal phase lag for the thermistors is estimated to be less than 4O, the observed 
tendency for the thermistor and photographic measurements to agree more 
closely near resonance frequencies suggests that the thermistor measurements 
are highly sensitive to local flow speed. 

The driven response in the sliced-cylinder model consists of vortical cells 
propagating westward with a phase speed which decreases monotonically with 
decreasing frequency. The phase lag measurements discussed previously can be 
used to compute the westward non-dimensional phase speed C,R/L exhibited by 
the velocity nodes between the points P, and P,, The laboratory and theoretical 
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FIGURE 9. Phase lag of north-south velocity node measured a t  (a) P, and ( b )  Po as a function 
of frequency. 0, + , laboratory photographic and thermistor results ; x , numerical 
prediction; ----, analytic prediction. 

results plotted in figure 10 show excellent agreement over most of the frequency 
range explored. Only at  low frequencies does the percentage discrepancy increase. 
But, in view of the uncertainty in the thermistor technique, the low-frequency 
phase discrepancy between laboratory and numerical values is believed to be 
insignificant. (Any systematic error in the individual phase lag measurements 
made using the thermistor technique should cancel when the phase speed is 
computed using the difference of the observed phase lags.) 

A stream-function sequence is shown in figure 11 for the case of very strong 
forcing near the  IT,,^ eigenfrequency. With the large laboratory Rossby number 
eo = 0.152, north-south asymmetry due to strong inertial effects is clearly illu- 
strated. Increased inertia also affects the relative phase of the fluid response. The 
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FIGURE 10. Westward phase speed scaled by RL against forcing frequency. + , computed 
from laboratory thermistor measurements ; x , numerical model prediction; -, analytic 
prediction. 

0 3 n  

FIGURE 11. stream-function patterns at phase lags of 0 and @r for very strong forcing 
(co = 0.152) a t  w/R = 0.07. Contour interval is 20. Extreme values are, from left to right, 
H = 3, L = -324, H = 22; L = -182, H = 207. 

westward phase speed, still operationally defined as the average phase speed of the 
north-south velocity node along the x axis between P, and P,, however, exhibits 
only a weak dependence on eo. Plotted in figure 12 against co are the observed 
phase speed values normalized by the analytic value for laboratory experiments 
at CT = 0.0575,0.07, and 0.085 and numerical experiments at  cr = 0-07. While the 
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numerical model exhibits a clear deGreafi&g trend in cp W& ;noreasing forcing, 

the scatter in the laboratory data prevents any significant comparison (although 
some of the laboratory data, especially a t  cr = 0.085 and 0-0575, are quite sug- 
gestive). This weak dependence of C, on e0 is a consequence of the truly inertial 
nature of the restoring force or p effect for Rossby waves. 

3.3. Particle motion and mean Lagrangian currents 
In  the interior region of the basin, the Lagrangian particle trajectories for the 
sliced-cylinder modes are approximately elliptical. Several sequences of relatively 
short exposure streak photographs taken almost continuously were made a t  
different forcing frequencies to determine the Lagrangian trajectories of indi- 
vidual aluminium flakes suspended in the fluid. A composite sketch of the 
observed paths for near resonant forcing at  B = 0.07 is shown in figure 13. The 
laboratory Rossby number E,, = 0.0304 and the particle trajectories exhibit 
both a western concentration due to Ekman-layer dissipation, and a north-south 
asymmetry due to nonlinearity. 
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FIGURE 13. Composite sketch of Lagrangiari particle path over one 

mavc period for q, = 0.0304, w / Q  = 0.05. 

An :i,ttempt was also made to  measure the mean Lagrangian currents by 
averaging the observed particle trajectories over one wave period T,. The 
resulting observed mean particle displacements are plotted in figure 14 ( a )  for 
the near resonance case of cr = 0.07. The reference length scale shown in figure 
14 ( a )  represents 1 cm or I/( 12.7) of the radius of the basin. Although somewhat 
confused, the observed pattern is dominated by two gyres centred in the western 
half of the basin. The mean circulation in the northwest gyre is clockwise (or 
anticyclonic), while that in the much weaker southwest gyre is counterclockwise. 

Moore ( 1970) clarified the controversy regarding the misinterpretation of mean 
Eulerian currents as mean transports that has existed in some recent ocean 
circulation problems. Using a Rossby number expansion approach, Moore 
analysed the governing nonlinear equations for inviscid oscillatory motion in a 
variable depth rotating ocean, and found that the second-order Lagrangian mean 
velocity satisfies the linearized vorticity and continuity equations for unforced 
steady geostrophic motion. 

Since the sliced-cylinder geometry possesses no closed geostrophic contours, 
Moore’s result implies that the mean Lagrangian motion associated with each 
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FIGURE 14(a). For legend see next page. 

inviscid sliced-cylinder topographic Rossby mode is everywhere identically zero. 
Thus the mew Eulerian velocity field is exactly cancelled by the equal but 
opposite Stokes drift velocity field associated with the oscillatory wave motion. 
This result does not apply in general to forced motion in simple ocean systems 
with dissipation. 

We present here a simple extension of Moore’s (1970) analyses, to include the 
effects of periodic forcing and Ekman-layer dissipation. Considerf to be constant, 
the depth h variable, and a rigid lid enclosing the upper surface of the fluid. In 
keeping with the approximate vorticity balance governing the sliced-cylinder 
models, we assume that the periodic forcing and the Ekman dissipation coefficient 
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FIGURE 14. (a) Net mean Lagrangian particle displacement over one wave period, as 
measured by streak photography in the laboratory model, for E,, = 0.0304, o/.Q = 0.07, 
Elc = 1.38 x For meaning of large arrows, see text. P, is the wave period. (b )  Mean 
Eulerian stream funct,ion predicted numerically for same external conditions studied in (a). 
Contour interval is 10; extreme values are & 138. 

(equivalent t oy  in (2)) are both spatially homogeneous. Then, in Moore’s termino- 
logy, the governing scaled equations are 

D f + e w  eb+eaw +)=T- , V.(uh) = 0, 

where aw and b represent the dissipation and forcing processes, and o = fc. V x U. 
Assume perturbation expansions for the velocity u and coefficients a and b of the 
form m 

( u , a , b )  = c en(U,,a,,b,). 
n = l  

Following Moore’s procedure, we find from integration of the first-order vorticity 

Integration of the second-order vorticity equation, plus some manipulation, 
yields 
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where, in Moore’s terminology, the superscript t indicates partial integration 
with respect to time from to to t ,  and the brackets ( ) signify the time average 
over one wave period T from to to to + T.  

The second-order mean Eulerian U, and Lagrangian U, velocities are 
defined by 

The second term in (9) is the Stokes drift velocity, discussed in depth by Longuet- 
Higgins (1969). Both U, and U, satisfy the continuity condition 

u, = <U2>’ u, = (u2) + (@E. V) u,). (8), (9) 

0. (hu,) = v.  (hU,) = 0. 

Inspection of the mean vorticity equation (7 )  indicates that both mean Eulerian 
and Lagrangian flows exist for the case of strong forcing and dissipation (i.e. for 
both b, and a, of order unity). Only in the case of weak forcing and weak dissipa- 
tion (i.e. b and a both O(e), so that a, = b, = 0) does (7)  reduce to Moore’s result 

U,. Vflh = 0, (10) 

indicating a zero mean particle transport for basins with open geostrophic con- 
tours. As pointed out by Moore, this latter case applies to weakly driven systems 
with Ekman dissipation, provided the forcing frequency is near a strongly 
resonance eigenfrequency . 

In  the sliced-cylinder model equation (2), forcing and Ekman-layer dissipation 
are of equal order. The non-dimensional ratio of the damping to the local deriva- 
tive of vorticity with respect to time is small. (aw/wt = y/rmn = 0.05 for excita- 
tion at CT = 0.07, near the maximum eigenfrequency vo,.) But the appropriate 
Rossby number Ro is still smaller, suggesting that, at the larger resonance 
frequencies, the Stokes drift will partially cancel the second-order mean Eulerian 
velocity. If our experiments had been performed at much higher !2, then a direct 
laboratory test of Moore’s result could be attempted. 

We shall attempt to test the suggestion that the mean particle transport will 
be reduced by the partial cancellation of the mean Eulerian flow by the Stokes 
drift when the lower resonant modes are excited. The numerical model was used 
to compute the mean Eulerian stream function for external parameters also used 
in the laboratory experiment of figure 14 (a) .  The computed mean Eulerian field 
shown in figure 14 ( b )  consists of two gyres, with a broad westward flow in the 
centre of the basin, fed by return flows from the northern and southern regions. 
The centres of the mean Eulerian gyres are located at the large crosses in figure 
14 (a).  The maximum mean Eulerian currents occur in the western half of the 
basin along,the negative x axis and in the northwest and southwest boundary 
regions. We have measured the local mean flow maximum as in these regions and 
plotted in figure 14 (a) ,  as the three large arrows, the calculated mean particle 
trajectory over one wave period assuming zero Stokes drift. The observed mean 
Lagrangian velocities are indeed smaller by approximately 60 %, indicating a 
substantial Stokes drift contribution to the Lagrangian transport. 
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3.4. Bteady and oscillatory forcing 

As mentioned above, several exploratory laboratory experiments were conducted 
to study the fluid response in the sliced-cylinder model to a forcing function 
possessing both steady and oscillatory components. A differential gear was used 
to add a sinusoidal and steady angular velocity together in the drive mechanism 
for the upper lid. The results of one experiment will be briefly discussed now. The 
experimental parameters are 

cs = 0.06, eo = 0.03, E = 1.38 x = 0.07, t ana  = 0.178. 

The western boundary-layer Reynolds number Re, = es/(E3 tan a) = 91 is signifi- 
cantly above the onset of instability value of 72 determined in Beardsley (1969). 
Two streak photographs with a phase lag of 7~ between are shown in figure 15 
(plate 2). The steady flow pattern with a western boundary layer is clearly 
dominated by the oscillatory mode. In  the interior, the Sverdrup flow is approxi- 
mately & the oscillatory flow, while, in the western boundary current, the 
maximum steady velocity (theoretically predicted ignoring the oscillatory 
forcing) is 8 times the observed magnitude of the oscillatory mode (shown in 
figure 4, plate 1). For the case of cyclonic steady forcing ( E ,  > 0) shown here, the 
boundary layer alternately thickens and thins, depending on whether the topo- 
graphic Rossby mode advects positive or negative-vorticity into the western 
boundary current. The centre of the boundary-layer vortex (in the southwest 
quadrant) and the boundary transport clearly fluctuate, as does the directionality 
and magnitude of the flow in the western boundary-layer transition zone. The 
periodic production of secondary eddies for strong steady forcing are not observed 
here, owing to the domination by the driven oscillatory mode. 

4. Conclusion 
We have examined in parts 1 and 2 the response of the ‘ sliced-cylinder ’ wind- 

driven ocean circulation model when driven by a steady (part 1) or an oscillatory 
(part 2) ‘wind’ stress. In  both cases, this simple model (devised by Pedlosky & 
Greenspan 1967) has exhibited many features both relevant to the wind-driven 
ocean circulation problem and of general interest in geophysical fluid dynamics. 
In  the case of steady forcing, the competition between Ekman-layer suction and 
topographic vortex stretching for control of the Stewartson Ef side-wall boundary 
layer has been elucidated; and the topographically modified E )  layer has been 
used to @lose the interior ‘wind ’ driven circulation on the western boundary of the 
basin. For strong steady forcing, the low-frequency flow instability observed in 
the sliced-cylinder model is now known to be due to the local breakdown of the 
finite-amplitude topographic Rossby wave embedded in the downstream transi- 
tion region of the western boundary layer. In  the case of a sinusoidal ‘wind’ stress, 
the expected resonance does occur when the spatial structural and frequency of 
the driving ‘wind’ stress is tuned to the more weakly damped (higher &) topo- 
graphic Rossby wave modes. The strong Stokes drift associated with the weakly- 
damped modes driven at and near resonance does partially oppose the mean 
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Eulerian motion, resulting in weaker Lagrangian transports. As indicated by 
Moore (1970), this point is quite important in deciding in particular cases if mean 
Lagrangian transports are driven by fluctuating motions. The generally good 
agreement between the laboratory observations and the numerical model predict- 
ions clearly verifies and illustrates the direct applicability of Greenspan’s (1969) 
derivation of the two-dimensional governing vorticity equation for low-frequency 
flows in closed basins with small topographic variations. In reality, the wind stress 
field over the world ocean is quite complex: both significant mean and fluctuating 
components are still poorly understood. The preliminary observational evidence 
suggests that roughly half of the kinetic energy in the larger-scale oceanic eddies 
is contained in the baroclinic modes, rendering any barotropic model (like ours) 
incomplete at  best. While the steep continental slopes should tend to effectively 
reflect incident planetary wave energy, the irregular boundary shape and topo- 
graphy together with baroclinic conversion processes (like baroclinic instability 
or the conversion of barotropic currents into topographically trapped baroclinic 
modes) make the time-dependent sliced-cylinder model discussed here much too 
simple for direct simulation of actual oceanic phenomena. But the very simplicity 
of the conceptual model has allowed us successfully to study and solve the baro- 
tropic problem in depth, with the realization that the results will help in the 
development and understanding of more sophisticated analytical and numerical 
models for the real wind-driven ocean circulation. 
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